A researcher claimed that there are 10% of the a large population have disease H.

A random sample of 5 people is taken from this population and examined.

If 4 people in this random sample have the disease, what does it mean? **How likely** would this happen if the research is right?
What is probability?

What’s the probability of getting a head on the toss of a single fair coin? Use a scale from 0 (no way) to 1 (sure thing).

So toss a coin twice. Do it! Did you get one head & one tail? What’s it all mean?
A rough definition: (frequentist definition)

Probability of event A is the proportion of times that the event A would occur in a very long series of repetitions of a random experiment.

Common sense?!
Many Repetitions!

Total Heads / Number of Tosses

Number of Tosses

Lecture 2 - 4
Probability Distribution

If a balanced coin is tossed, Head and Tail are equally likely to occur,

\[P(\text{Head}) = 0.5 = \frac{1}{2} \quad \text{and} \quad P(\text{Tail}) = 0.5 = \frac{1}{2} \]

\[P(\text{all possible outcomes}) = P(\text{Head or Tail}) = P(\text{Head}) + P(\text{Tail}) = \frac{1}{2} + \frac{1}{2} = 1.0 \]

Total probability is 1.
What is the probability distribution of die?

If outcomes are equally likely to occur, the distribution is

\[P(1) = \frac{1}{6}, \quad P(2) = \frac{1}{6}, \]
\[P(3) = \frac{1}{6}, \quad P(4) = \frac{1}{6}, \]
\[P(5) = \frac{1}{6}, \quad P(6) = \frac{1}{6}, \]

and total probability is 1.
Uniform Distribution

Probability Density (Mass) Distribution

- Bars for values 0, 1, 2, 3, 4, 5
- Y-axis ranges from 0 to 0.2
- X-axis values: 0, 1, 2, 3, 4, 5
- Values on the bars: 0.15, 0.20, 0.15, 0.15, 0.20, 0.20
Properties of Probability

- Probability is always a value between 0 and 1.
- Total probability equals 1.
Relative Frequency and Probability

Number of children per household from a sample of 300 households

<table>
<thead>
<tr>
<th>Class</th>
<th>Frequency</th>
<th>Relative Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>54</td>
<td>.18</td>
</tr>
<tr>
<td>1</td>
<td>117</td>
<td>.39</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>.24</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>.14</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>.04</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>.01</td>
</tr>
<tr>
<td>Total</td>
<td>300</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Discrete Distribution

Relative Frequency Distribution
Discrete Distribution

If a household is randomly selected from the 300 household, what is the probability that it has more than 3 children?

\[
P(\text{more than 3 children}) = 0.04 + 0.01 = 0.05
\]
Random Variable

A variable that can assume a numerical description of the outcome from a random experiment by chance.

Usually is denoted by a capital letter.
A random variable assumes discrete values.
Discrete Random Variable

Example: (Toss a balanced coin)

X = 1, if Head occurs, and X = 0 if Tail occurs.

P(Head) = P(X=1) = P(1) = .5
P(Tail) = P(X=0) = P(0) = .5
Example: What is probability of getting a number less than 3 when roll a balanced die?

\[P(X < 3) = P(X \leq 2) = ? \]

Answer: \(\frac{2}{6} = \frac{1}{3} \)
Why Random Variable?

- A simple mathematical notation to describe an event. e.g.: $X < 3$, $X = 0$, ...
- Mathematical function can be used to model the distribution through the use of random variable. e.g.: Binomial, Poisson, Normal, …
Bernoulli Trial

Definition: Bernoulli trial is a random experiment whose outcomes are classified as one of the two categories. (S, F) or (Success, Failure) or (1, 0)

\[P(S) = P(X=1) = p, \quad P(F) = P(X=0) = 1 - p. \]

Example: (Head, Tail), (Died, Survived)
Bernoulli Probability

Example: In a random experiment of tossing an unbalanced coin, the probability of Head is 0.3, what is the probability distribution?

\[P(\text{Head}) = P(X=1) = 0.3, \]
\[P(\text{Tail}) = P(X=0) = 1 - 0.3 = 0.7. \]
Bionomial Experiment

A random experiment involving a sequence of *independent* and *identical* Bernoulli trials.

Example:

- Toss a coin ten times and observing Head or Tail turns up.
- Roll a die 3 times and observing a 6 or not 6 turns up.
In a binomial experiment involving n independent and identical Bernoulli trials each with probability of success p, the probability of having x successes can be calculated with the binomial probability mass function, and it is, for $x = 0, 1, \ldots, n$,

$$P(X = x) = \binom{n}{x} \cdot p^x \cdot (1 - p)^{n-x}$$

$$= \frac{n!}{x!(n-x)!} \cdot p^x \cdot (1 - p)^{n-x}$$
Factorial

\[n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n \]

Example: \[3! = 1 \cdot 2 \cdot 3 = 6 \]
Binomial Distribution

Parameters of the distribution:

Mean of the distribution, $\mu = n \cdot p$

Variance of the distribution, $\sigma^2 = n \cdot p \cdot (1-p)$

Standard deviation, σ, is the **square root of variance**.
Binomial Probability

Example: A balanced die is rolled three times (or three balanced dice are rolled), what is the probability to see two 6’s?

\[\mu = 3 \cdot \frac{1}{6} = \frac{1}{2}, \quad \sigma^2 = 3 \cdot \frac{1}{6} \cdot \frac{5}{6} = \frac{5}{12} \]

\[n = 3, \quad p = \frac{1}{6}, \quad x = 2 \]

\[P(X=2) = \frac{3!}{2!1!} \cdot \left(\frac{1}{6} \right)^2 \cdot \left(\frac{5}{6} \right)^{3-2} \]

\[= 3 \cdot \left(\frac{1}{6} \right)^2 \cdot \left(\frac{5}{6} \right)^1 \]

\[= .069 \]
Binomial Probability

Example: If there are 10% of the population in a community have a certain disease, what is the probability that 4 people in a random sample of 5 people from this community has the disease?

Identify \(n = 5, \ x = 4, \ p = .10 \)

\[
P(X=4) = \frac{5!}{[4!(5-4)!]} \cdot (.10)^4 \cdot (1-.10)^{5-4}
\]
\[
= 5 \cdot (.10)^4 \cdot (.90)^1
\]
\[
= .00045
\]
Example: In the previous problem, what is the probability that 4 or more people have the disease?

Identify \(n = 5 \), \(x = 4 \) (and also \(x = 5 \)), \(p = .10 \)

\[
P(X \geq 4) = P(X=4) + P(X=5)
\]

\[
= .00045 + \left\{ \frac{5!}{[5!(5-5)!]} \right\} \cdot (.10)^5 \cdot (1-.10)^{5-5}
\]

\[
= .00045 + .00001 = .00046
\]

(What this number is telling us?)
Poisson Distribution

The Poisson distribution is used to model discrete events that occur infrequently in time or space.

Model the number of successes in a given time period or in a given unit space.
Poisson Distribution

Let X represents the number of occurrences of some event of interest over a given interval from a Poisson process, and the λ is the mean of the distribution, the probability of X assumes the value x is, for $x = 0, 1, 2, \ldots$,

$$P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

Can be used to approximate Binomial prob, with large n.
The probability that a single event occurs within an interval is proportional to the length of the interval.

Within a single interval, an infinite number of occurrences is possible.

The events occurs independently both within the same interval and between consecutive non-overlapping intervals.
A (Simple) **Random Sample** of size \(n \) consists of \(n \) individuals from the population chosen in such a way that every set of \(n \) individuals has an equal chance to be the sample actually selected.
Counting Rule:

Multiplication Principle: In a sequence of \(k \) events in which the first one has \(n_1 \) possibilities and the second event has \(n_2 \) and the third has \(n_3 \), and so forth, the total possibilities of the sequence will be
\[
\times_{k} \prod_{i=1}^{k} n_i
\]
Permutation Rule:

The number of possible permutations of \(r \) objects from a collection of \(n \) distinct objects is

\[
_{n}P_r = \frac{n!}{(n-r)!}
\]
Combination Rule:

The number of possible combinations of \(r \) objects from a collection of \(n \) distinct objects is

\[
_{n}C_r = \left(\begin{array}{c} n \\ r \end{array} \right) = \frac{n!}{(n-r)!r!}
\]
Continuous Random Variables
(Normal Distribution)
Continuous Probability Density Function

1. Mathematical Formula

2. Shows All Values, x, & Densities, $f(x)$
 - $f(X)$ Is Not Probability

3. Properties
 \[
 \int_a^b f(x) \, dx = 1
 \]
 All X (Area Under Curve)
 \[
 f(x) \geq 0, \quad a \leq x \leq b
 \]
Continuous Random Variable Probability

Probability is area under curve!

\[P(c \leq x \leq d) = \int_{c}^{d} f(x) \, dx \]
Normal Distribution
Importance of Normal Distribution

1. Describes Many Random Processes or Continuous Phenomena

2. Can Be Used to Approximate Discrete Probability Distributions
 - Example: Binomial

3. Basis for Classical Statistical Inference
1. ‘Bell-Shaped’ & Symmetrical

2. Mean, Median, Mode Are Equal

3. Random Variable Has Infinite Range
 \[-\infty < X < \infty\]
Normal Probability Density Function

\[f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\left(\frac{1}{2}\right) \left(\frac{x-\mu}{\sigma}\right)^2} \]

- \(f(x) \) = Frequency of Random Variable \(x \)
- \(\sigma \) = Population Standard Deviation
- \(\pi \) = 3.14159; \(e \) = 2.71828
- \(x \) = Value of Random Variable (-\(\infty < x < \infty \))
- \(\mu \) = Population Mean
Effect of Varying Parameters (μ & σ)
Normal Distribution

Probability

Probability is area under curve!

\[P(c \leq x \leq d) = \int_{c}^{d} f(x) \, dx \]
Normal distributions differ by mean & standard deviation. Each distribution would require its own table. That’s an infinite number!
Standard Normal Distribution, $\mathcal{N}(\mu = 0, \sigma = 1)$, is a normal distribution with mean 0 and standard deviation 1.

Notation Z is often used to denote Standard Normal random variable.
P(0 < Z < 0.32) = Area between 0 and .32

\[
\begin{array}{c|c|c|c}
Z & .00 & .01 & .02 \\
\hline
0.0 & .500 & .496 & .492 \\
0.1 & .460 & .456 & .452 \\
0.2 & .421 & .417 & .413 \\
0.3 & .382 & .378 & .374 \\
\end{array}
\]

Area = .5 - .374 = .126
Standardize the Normal Distribution

\[Z = \frac{X - \mu}{\sigma} \]

Normal Distribution

Standardized Normal Distribution

One table!
Standardizing Example

\[Z = \frac{X - \mu}{\sigma} = \frac{6.2 - 5}{10} = .12 \]

Normal Distribution

\[\sigma = 10 \]
\[\mu = 5 \] 6.2 \[X \]

Standardized Normal Distribution

\[\sigma = 1 \]
\[\mu = 0 \] .12 \[Z \]
Obtaining the Probability

Standardized Normal Probability Table (Portion)

<table>
<thead>
<tr>
<th>Z</th>
<th>.00</th>
<th>.01</th>
<th>.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>.500</td>
<td>.496</td>
<td>.492</td>
</tr>
<tr>
<td>0.1</td>
<td>.460</td>
<td>.456</td>
<td>.452</td>
</tr>
<tr>
<td>0.2</td>
<td>.421</td>
<td>.417</td>
<td>.413</td>
</tr>
<tr>
<td>0.3</td>
<td>.382</td>
<td>.378</td>
<td>.3745</td>
</tr>
</tbody>
</table>

Area = \(\frac{1}{2} - .452 = .048 \)

\[\sigma = 1 \]

\(\mu = 0 \)

\(Z = .12 \)
Example

\[P(3.8 \leq X \leq 5) \]

\[
Z = \frac{X - \mu}{\sigma} = \frac{3.8 - 5}{10} = -.12
\]

Normal Distribution

\[
\sigma = 10
\]

\[
\mu = 5
\]

\[
X
\]

Standardized Normal Distribution

\[
\sigma = 1
\]

\[
\mu = 0
\]

\[
Z
\]

Area = .048
Example

\[P(2.9 \leq X \leq 7.1) \]

\[Z = \frac{X - \mu}{\sigma} = \frac{2.9 - 5}{10} = -0.21 \]

\[Z = \frac{X - \mu}{\sigma} = \frac{7.1 - 5}{10} = 0.21 \]

Area = 0.083 + 0.083 = 0.166
Example

\(P(X > 8) \)

\[Z = \frac{X - \mu}{\sigma} = \frac{8 - 5}{10} = .30 \]

\[\sigma = 10 \]

\[\mu = 5 \]

\[8 \]

\[X \]

\[\sigma = 1 \]

\[\mu = 0 \]

Area = .382
Example

\[P(7.1 \leq X \leq 8) \]

\[
Z = \frac{X - \mu}{\sigma} = \frac{7.1 - 5}{10} = .21
\]

\[
Z = \frac{X - \mu}{\sigma} = \frac{8 - 5}{10} = .30
\]

Normal Distribution

\[\sigma = 10 \]

\[\mu = 5 \]

\[7.1 \]

\[8 \]

\[X \]

Standardized Normal Distribution

\[\sigma = 1 \]

\[\mu = 0 \]

\[.21 \]

\[.30 \]

\[Z \]

Area = .417 - .382 = .035
Normal Distribution
Thinking Challenge

The life time of a medical device has a normal distribution with $\mu = 2000$ hours & $\sigma = 200$ hours. What’s the probability that such a device will last

A. between 2000 & 2400 hours?

B. less than 1470 hours?
Solution*

$P(2000 \leq X \leq 2400)$

$Z = \frac{X - \mu}{\sigma} = \frac{2400 - 2000}{200} = 2.0$

Normal Distribution

$\mu = 2000$ 2400 X

$\sigma = 200$

Standardized Normal Distribution

$\mu = 0$ 2.0 Z

$\sigma = 1$.477
Solution*

\[P(X \leq 1470) \]

\[Z = \frac{X - \mu}{\sigma} = \frac{1470 - 2000}{200} = -2.65 \]

Normal Distribution

\(\sigma = 200 \)

\(\mu = 2000 \)

\(X \)

Standardized Normal Distribution

\(\sigma = 1 \)

\(\mu = 0 \)

\(Z \)

\(.004 \)
Finding Z Values for Known Probabilities

What is \(z \) given \(P(Z < z) = 0.622 \)?

Area = 1 - 0.622 = 0.378

\[z = 0.31 \]

Standardized Normal Probability Table (Portion)

<table>
<thead>
<tr>
<th>Z</th>
<th>.00</th>
<th>.01</th>
<th>.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.500</td>
<td>0.496</td>
<td>0.492</td>
</tr>
<tr>
<td>0.1</td>
<td>0.460</td>
<td>0.456</td>
<td>0.452</td>
</tr>
<tr>
<td>0.2</td>
<td>0.421</td>
<td>0.417</td>
<td>0.413</td>
</tr>
<tr>
<td>0.3</td>
<td>0.382</td>
<td>0.378</td>
<td>0.3745</td>
</tr>
</tbody>
</table>

Lecture 2 - 55
Finding X Values for Known Probabilities

Normal Distribution

Standardized Normal Distribution

\[X = \mu + Z \cdot \sigma = 5 + (0.31)(10) = 8.1 \]
Example: Height of infants is normally distributed with a mean 7 lb and standard deviation of 1.2 lb. Find the 90th percentile.

Area to the left of 90th percentile is 0.100. In the table there is an area value 0.100 corresponding to a z-score of 1.28.

90th percentile = 7 + 1.28 \times 1.2 = 8.536 \text{ lb}
Normal Approximation of Binomial Distribution

1. Not All Binomial Tables Exist

2. Requires Large Sample Size

3. Gives Approximate Probability Only, By Normal Distribution with $\mu = np, \sigma^2 = np(1-p)$

4. Need Correction for Continuity

$n = 10 \; p = 0.50$
Sampling Distributions
Inferential Statistics

1. Involves:
 - Estimation
 - Hypothesis Testing

2. Purpose
 - Make Decisions about Population Characteristics
Inference Process

Estimates & tests
Sample statistic \(X\)
Population
Sample

Lecture 2 - 61
1. Statistics (Random Variables) Used to Estimate a Population Parameter
 - Sample Mean, Sample Proportion, Sample Median
 - Example: Sample Mean \bar{X} is an Estimator of Population Mean μ
 - If $\bar{X} = 3$ then 3 Is the Estimate of μ

2. Theoretical Basis Is Sampling Distribution
Sampling Distribution

Theoretical Probability Distribution of the Sample Statistic.
Standard Error of Mean

1. Standard Deviation of the sampling distribution of the Sample Means, \(\bar{X} \)
 - Measures Scatter in All Sample Means, \(\bar{X} \)

2. Less Than Pop. Standard Deviation

3. Formula (Sampling With Replacement)
 \[
 \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}
 \]
Properties of Sampling Distribution of Mean

1. **Unbiasedness**
 - Mean of Sampling Distribution Equals Population Mean

2. **Efficiency**
 - Sample Mean Comes Closer to Population Mean Than Any Other Unbiased Estimator

3. **Consistency**
 - As Sample Size Increases, Variation of Sample Mean from Population Mean Decreases
Unbiasedness

\[P(\bar{X}) \]

Unbiased

Biased

A

\[\mu \]

C

Lecture 2 - 66
Efficiency

Sampling distribution of mean

Sampling distribution of median

$P(\bar{X})$
Consistency

$P(\bar{X})$

Larger sample size

Smaller sample size

μ

A

B

Lecture 2 - 68
Sampling From Normal Population

If a random sample is taken from a normally distributed population that has a mean μ and a standard deviation σ, the sampling distribution of the sample means is normal with

$$
\mu_{\bar{x}} = \mu
$$

$$
\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}
$$
Sampling from Normal Populations

Central Tendency
\[\mu_{\bar{X}} = \mu \]

Dispersion
\[\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} \]

Population Distribution
- \(\mu = 50 \)
- \(\sigma = 10 \)

Sampling Distribution
- \(n = 4 \)
 \(\sigma_{\bar{X}} = 5 \)
- \(n = 16 \)
 \(\sigma_{\bar{X}} = 2.5 \)
Standardizing Sampling Distribution of Mean

$$Z = \frac{X - \mu_x}{\sigma_x} = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Sampling Distribution

Standardized Normal Distribution

$\sigma = 1$

$\mu = 0$

Z

$Lecture 2 - 71$
Thinking Challenge

Waiting times at a certain type of clinic are normally distributed with $\mu = 8$ min. & $\sigma = 2$ min. If you select random samples of 25 cases, what is the sampling distribution of the mean? What is the probability that the sample mean would be between 7.8 & 8.2 minutes?
The sampling distribution of the mean is normal distribution with mean = 8, and standard deviation = $2/5 = .4$
Sampling Distribution

Solution*

\[
Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} = \frac{7.8 - 8}{2/\sqrt{25}} = -0.50
\]

\[
Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} = \frac{8.2 - 8}{2/\sqrt{25}} = 0.50
\]

Sampling Distribution of sample mean

\[\sigma_{\bar{X}} = 0.4\]

Standardized Normal Distribution

\[\sigma = 1\]

\[-0.50 \quad 0 \quad 0.50 \quad Z\]

\[0.383\]
Central Limit Theorem

If a relatively large random sample is taken from a population that has a mean \(\mu \) and a standard deviation \(\sigma \), regardless of the distribution of the population, the distribution of the sample means is approximately normal with

\[
\mu_{\bar{x}} = \mu \\
\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}
\]
Central Limit Theorem

As sample size gets large enough \((n \geq 30)\) ... the sampling distribution becomes almost normal.

\[
\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}
\]

\(\mu_{\bar{x}} = \mu\)
Sampling from Non-Normal Populations

Central Tendency
\[\mu_{\bar{X}} = \mu \]

Dispersion
\[\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} \]

- Sampling with replacement

Population Distribution
\[\sigma = 10 \]
\[\mu = 50 \]
\[X \]

Sampling Distribution
\[\sigma_{\bar{X}} = 5 \quad \text{for } n = 4 \]
\[\sigma_{\bar{X}} = 1.8 \quad \text{for } n = 30 \]

\[\mu_{\bar{X}} = 50 \]
\[\bar{X} \]
Example: Consider the distribution of serum cholesterol levels for all 20- to 74-year-old males living in United States has a mean of 211 mg/100 ml, and the standard deviation of 46 mg/100 ml. If a random sample of 100 individuals from the population, what is the probability that the average serum cholesterol level of these 100 individuals is higher than 225?
Solution:

Since n = 100, the sampling distribution of the mean is approximately normal with mean 211 and standard error 4.6 (= 46/10).

\[P(X > 225) = P(Z > \frac{225 - 211}{4.6}) \]
\[= P(Z > 3.04) \]
\[= 0.001 \]
Inferences Based on a Single Sample

Estimation with Confidence Intervals
Estimation Process

Population

Mean, μ, is unknown

Sample

Random Sample

Mean $\bar{X} = 50$

I am 95% confident that μ is between 40 & 60.
Unknown Population Parameters Are Estimated

<table>
<thead>
<tr>
<th>Estimate Population Parameter...</th>
<th>with Sample Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (\mu)</td>
<td>(\bar{x})</td>
</tr>
<tr>
<td>Proportion (p)</td>
<td>(\hat{p})</td>
</tr>
<tr>
<td>Variance (\sigma^2)</td>
<td>(s^2)</td>
</tr>
<tr>
<td>Differences (\mu_1 - \mu_2)</td>
<td>(\bar{x}_1 - \bar{x}_2)</td>
</tr>
</tbody>
</table>
Point Estimation

1. Provides Single Value
 - Based on Observations from 1 Sample

2. Gives No Information about How Close Value Is to the Unknown Population Parameter

3. Example: Sample Mean $\bar{X} = 3$ Is Point Estimate of Unknown Population Mean
Interval Estimation

1. Provides Range of Values
 - Based on Observations from 1 Sample

2. Gives Information about Closeness to Unknown Population Parameter
 - Stated in terms of Probability
 - Knowing Exact Closeness Requires Knowing Unknown Population Parameter

3. Example: Unknown Population Mean Lies Between 50 & 70 with 95% Confidence
Key Elements of
Interval Estimation

A probability that the population parameter falls somewhere within the interval.
Confidence Limits for Population Mean

Parameter = Statistic ± Error

1. \(\mu = \bar{X} \pm \text{Error} \)
2. \(\text{Error} = \bar{X} - \mu \) or \(\bar{X} + \mu \)
3. \(Z = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}} = \frac{\text{Error}}{\sigma_{\bar{X}}} \)
4. \(\text{Error} = Z\sigma_{\bar{X}} \)
5. \(\mu = \bar{X} \pm Z\sigma_{\bar{X}} \)
Many Samples Have Same Interval

\[\overline{X} = \mu \pm Z \sigma_{\overline{X}} \]

- 90% Samples: \(\mu - 2.58 \sigma_{\overline{X}} \) to \(\mu + 2.58 \sigma_{\overline{X}} \)
- 95% Samples: \(\mu - 1.96 \sigma_{\overline{X}} \) to \(\mu + 1.96 \sigma_{\overline{X}} \)
- 99% Samples: \(\mu - 1.65 \sigma_{\overline{X}} \) to \(\mu + 1.65 \sigma_{\overline{X}} \)
Confidence Level

1. Probability that the Unknown Population Parameter Falls Within Interval

2. Denoted \((1 - \alpha)\)%
 - \(\alpha\) is Probability That Parameter Is Not Within Interval

3. Typical Values Are 99%, 95%, 90%
Intervals & Confidence Level

Sampling Distribution of Mean

\[
\mu_{\bar{X}} = \mu
\]

Intervals extend from \(\bar{X} - Z\sigma_{\bar{X}} \) to \(\bar{X} + Z\sigma_{\bar{X}} \)

(1 - \(\alpha \)) % of intervals contain \(\mu \).
\(\alpha \) % do not.

Large number of intervals
Factors Affecting Interval Width

1. Data Dispersion
 - Measured by σ

2. Sample Size
 - $\sigma_{\bar{x}} = \sigma / \sqrt{n}$

3. Level of Confidence
 - $(1 - \alpha)$
 - Affects Z

Intervals Extend from $\bar{X} - Z\sigma_{\bar{x}}$ to $\bar{X} + Z\sigma_{\bar{x}}$
Confidence Interval Estimates

Confidence Intervals

Mean

- σ Known
- σ Unknown

Proportion

Variance
Confidence Interval
Mean (σ Known)

1. Assumptions

- Population Standard Deviation Is Known
- Population Is Normally Distributed
- If Not Normal, Can Be Approximated by Normal Distribution \((n \geq 30)\)
Confidence Interval

Mean (σ Known)

1. Assumptions
 - Population Standard Deviation Is Known
 - Population Is Normally Distributed
 - If Not Normal, Can Be Approximated by Normal Distribution (n ≥ 30)

2. Confidence Interval Estimate
 \[
 X - Z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \leq \mu \leq X + Z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}
 \]
Estimation Example
Mean (σ Known)

The mean of a random sample of $n = 25$ is $\bar{X} = 50$. Set up a 95% confidence interval estimate for μ if $\sigma = 10$.

\[
\bar{X} - Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X} + Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}
\]

\[
50 - 1.96 \cdot \frac{10}{\sqrt{25}} \leq \mu \leq 50 + 1.96 \cdot \frac{10}{\sqrt{25}}
\]

\[
46.08 \leq \mu \leq 53.92
\]
Thinking Challenge

You’re a Q/C inspector for Gallo. The σ for 2-liter bottles is .05 liters. A random sample of 100 bottles showed $\bar{X} = 1.99$ liters. What is the 90% confidence interval estimate of the true mean amount in 2-liter bottles?
Confidence Interval

Solution*

\[
\bar{X} - Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X} + Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}
\]

\[
1.99 - 1.645 \cdot \frac{.05}{\sqrt{100}} \leq \mu \leq 1.99 + 1.645 \cdot \frac{.05}{\sqrt{100}}
\]

\[
1.982 \leq \mu \leq 1.998
\]
Confidence Interval
Mean (σ Unknown)

1. Assumptions
 - Population Standard Deviation Is Unknown
 - Population Must Be Normally Distributed

2. Use Student’s t Distribution
Confidence Interval Mean (σ Unknown)

1. Assumptions
 - Population Standard Deviation Is Unknown
 - Population Must Be Normally Distributed

2. Use Student’s t Distribution

3. Confidence Interval Estimate

 \[
 \bar{X} - t_{\alpha/2,n-1} \cdot \frac{S}{\sqrt{n}} \leq \mu \leq \bar{X} + t_{\alpha/2,n-1} \cdot \frac{S}{\sqrt{n}}
 \]
Student's t Distribution

- Bell-Shaped
- Symmetric
- 'Fatter' Tails

- Standard Normal
- t ($df = 5$)
- t ($df = 13$)

Lecture 2 - 99
Student's t Table

<table>
<thead>
<tr>
<th>v</th>
<th>$t_{.10}$</th>
<th>$t_{.05}$</th>
<th>$t_{.025}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.078</td>
<td>6.314</td>
<td>12.706</td>
</tr>
<tr>
<td>2</td>
<td>1.886</td>
<td>2.920</td>
<td>4.303</td>
</tr>
<tr>
<td>3</td>
<td>1.638</td>
<td>2.353</td>
<td>3.182</td>
</tr>
</tbody>
</table>

Assume:
- $n = 3$
- $df = n - 1 = 2$
- $\alpha = .10$
- $\alpha/2 = .05$

The t value for $\alpha/2 = .05$ and $df = 2$ is 2.920.
Degrees of Freedom (df)

1. Number of Observations that Are Free to Vary After Sample Statistic Has Been Calculated

2. Example
 - Sum of 3 Numbers Is 6
 \[X_1 = 1 \text{ (or Any Number)} \]
 \[X_2 = 2 \text{ (or Any Number)} \]
 \[X_3 = 3 \text{ (Cannot Vary)} \]
 Sum = 6

 degrees of freedom
 \[= n - 1 \]
 \[= 3 - 1 \]
 \[= 2 \]
Estimation Example
Mean (σ Unknown)

A random sample of \(n = 25 \) has \(\bar{x} = 50 \) & \(s = 8 \). Set up a 95% confidence interval estimate for \(\mu \).

\[
\bar{x} - t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}} \leq \mu \leq \bar{x} + t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}
\]

\[
50 - 2.0639 \cdot \frac{8}{\sqrt{25}} \leq \mu \leq 50 + 2.0639 \cdot \frac{8}{\sqrt{25}}
\]

\[
46.69 \leq \mu \leq 53.30
\]
Thinking Challenge

You’re a time study analyst in manufacturing. You’ve recorded the following task times (min.): 3.6, 4.2, 4.0, 3.5, 3.8, 3.1.

What is the 90% confidence interval estimate of the population mean task time?
Confidence Interval Solution*

\(\bar{X} = 3.7 \)

\(S = 3.8987 \)

\(n = 6, \quad df = n - 1 = 6 - 1 = 5 \)

\(S / \sqrt{n} = 3.8987 / \sqrt{6} = 1.592 \)

\(t_{0.05,5} = 2.0150 \)

\(3.7 - (2.015)(1.592) \leq \mu \leq 3.7 + (2.015)(1.592) \)

\(0.492 \leq \mu \leq 6.908 \)
Confidence Interval

Proportion

1. Assumptions
 - Two Categorical Outcomes
 - Population Follows Binomial Distribution
 - Normal Approximation Can Be Used
 \[n\hat{p} \pm 3\sqrt{n\hat{p}(1 - \hat{p})} \] Does Not Include 0 or 1
Confidence Interval
Proportion

1. Assumptions
 - Two Categorical Outcomes
 - Population Follows Binomial Distribution
 - Normal Approximation Can Be Used
 - \(n\hat{p} \pm 3\sqrt{n\hat{p}(1 - \hat{p})} \) Does Not Include 0 or 1

2. Confidence Interval Estimate
 \[
 \hat{p} - z_{\alpha/2} \cdot \sqrt{\frac{\hat{p} \cdot (1 - \hat{p})}{n}} \leq p \leq \hat{p} + z_{\alpha/2} \cdot \sqrt{\frac{\hat{p} \cdot (1 - \hat{p})}{n}}
 \]
A random sample of 400 graduates showed 32 went to grad school. Set up a 95% confidence interval estimate for \(p \).

\[
\hat{p} - Z_{\alpha/2} \cdot \sqrt{\frac{\hat{p} \cdot (1 - \hat{p})}{n}} \leq p \leq \hat{p} + Z_{\alpha/2} \cdot \sqrt{\frac{\hat{p} \cdot (1 - \hat{p})}{n}}
\]

\[
.08 - 1.96 \cdot \sqrt{\frac{.08 \cdot (1 - .08)}{400}} \leq p \leq .08 + 1.96 \cdot \sqrt{\frac{.08 \cdot (1 - .08)}{400}}
\]

\[
.053 \leq p \leq .107
\]
Thinking Challenge

You’re a production manager for a newspaper. You want to find the % defective. Of 200 newspapers, 35 had defects. What is the 90% confidence interval estimate of the population proportion defective?
Confidence Interval
Solution*

\[
\hat{p} - z_{\alpha/2} \cdot \sqrt{\frac{\hat{p} \cdot (1 - \hat{p})}{n}} \leq p \leq \hat{p} + z_{\alpha/2} \cdot \sqrt{\frac{\hat{p} \cdot (1 - \hat{p})}{n}}
\]

\[
.175 - 1.645 \cdot \sqrt{\frac{.175 \cdot (.825)}{200}} \leq p \leq .175 + 1.645 \cdot \sqrt{\frac{.175 \cdot (.825)}{200}}
\]

\[
.1308 \leq p \leq .2192
\]
Finding Sample Sizes for Estimating μ

(1) $Z = \frac{X - \mu}{\sigma_x} = \frac{\text{Error}}{\sigma_x}$

(2) $\text{Error} = Z \sigma_x = Z \frac{\sigma}{\sqrt{n}}$

(3) $n = \frac{Z^2 \sigma^2}{\text{Error}^2}$

Error Is Also Called Bound, B
Sample Size Example

What sample size is needed to be 90% confident of being correct within ± 5? A pilot study suggested that the standard deviation is 45.

\[n = \frac{Z^2 \sigma^2}{\text{Error}^2} = \frac{(1.645)^2(45)^2}{(5)^2} = 219.2 \approx 220 \]
Thinking Challenge

You work in Human Resources at Merrill Lynch. You plan to survey employees to find their average medical expenses. You want to be 95% confident that the sample mean is within ± $50. A pilot study showed that σ was about $400. What sample size do you use?
Sample Size Solution*

\[n = \frac{Z^2 \sigma^2}{\text{Error}^2} \]

\[= \frac{(1.96)^2 (400)^2}{(50)^2} \]

\[= 245.86 \approx 246 \]