1. A gambler is investigating a game in a casino. He played the game 1000 times. The bet is a fixed amount of $1.00 each game. There are only three possible outcomes. Case I is he loses the bet, Case II is he wins $9 or Case III is he wins $99. From the 1000 times he played, Case I occurred 981 times, Case II occurred 15 times, and Case II occurred 4 times. Let X denote the amount of money he lost or won in each game, that is, X takes on -1, 9, or 99.

1) Find the empirical probability of losing the bet in a game.
2) Use the data he observed to estimate a probability model for the random variable X. That is, use the relative frequency to define the empirical probability density function of X.
3) Draw a probability line chart for the empirical p.d.f. of random variable X.
4) Graph the empirical distribution function of X.

2. Seven lots of components are ready to be shipped by a certain supplier. The number of defective components in each lot is as follows:

Lot 1: 3
Lot 2: 0
Lot 3: 2
Lot 4: 2
Lot 5: 1
Lot 6: 2
Lot 7: 0

One of these lots is to be randomly selected for shipment to a customer. Let X denote the number of defectives in the selected lot.

6. Find the p.d.f. of X.
7. Graph the p.d.f. and d.f. of X.
8. Find the probability of having no defectives in the shipment.

3. Is $f(x) = \frac{|x|}{9}$, $x = -2, -1, 1, 2, 3, 6$, a proper probability density function? Explain your answer using the properties of probability density function.

4. Let the p.d.f. of a random variable X be defined by $f(x) = \frac{x}{6}$, $x = 1, 2, 3$.
 a) $P(X > 1)$ =
 b) Find the expected value and variance of X.

5. If the probability density function of a continuous random variable X is given by

 $$f(x) = \begin{cases}
 2(1-x) & \text{for } 0 < x < 1 \\
 0 & \text{elsewhere}
 \end{cases}$$
 a) Find the expected value and the variance of X.
 b) Find the probability $P(X = 0.5)$.
 c) Find the distribution $P(X = 0.5)$.
 d) Find the median of this distribution.