Practice on t-distribution

- Find the area to the right of $t = 2.571$ with d.f. = 5.
- Find the area to the left of $t = 2.571$ with d.f. = 5.
- Find the area to the right of $t = 2.571$ and to the left of $t = -2.571$ with d.f. = 5.
- Approximate the area to the right of $t = 4.3$ with d.f. = 10.
- Approximate the area to the left of $t = 4.3$ with d.f. = 10.
- Approximate the area to the left of $t = -3.3$ with d.f. = 10.
Practice on t-test with calculated t scores (Assuming sampling from normal population)

H₀: µ ≥ 36
H₁: µ < 36
α = 0.05

p-value approach:
Sample size = 9, t = 2.896, p-value = _______ Decision rule:

Critical value approach:
C.V. = ___________ Decision rule:

Conclusion:

H₀: µ ≥ 36
H₁: µ < 36
α = 0.05

p-value approach:
Sample size = 9, t = -2.896, p-value = _______ Decision rule:

Critical value approach:
Critical value = ___________ Decision rule:

Conclusion:

H₀: µ = 36
H₁: µ ≠ 36
α = 0.05

p-value approach:
Sample size = 9, t = -2.896, p-value = _______ Decision rule:

Critical value approach:
Critical value = ___________ Decision rule:

Conclusion:
Practice on t-test with calculated statistics
(Assuming sampling from normal population)

H₀: \(\mu \geq 36 \)
Hₐ: \(\mu < 36 \)
\(\alpha = 0.05 \)

p-value approach:
Sample size = 10, \(\bar{x} = 39.4, \ s = 1.2, \ t = \) __________
p-value = ________ Decision rule:

Critical value approach:
C.V. = __________ Decision rule:

Conclusion:

H₀: \(\mu \leq 36 \)
Hₐ: \(\mu > 36 \)
\(\alpha = 0.05 \)

p-value approach:
Sample size = 10, \(\bar{x} = 39.4, \ s = 1.2, \ t = \) __________
p-value = ________ Decision rule:

Critical value approach:
C.V. = __________ Decision rule:

Conclusion:

H₀: \(\mu = 36 \)
Hₐ: \(\mu \neq 36 \)
\(\alpha = 0.05 \)

p-value approach:
Sample size = 10, \(\bar{x} = 39.4, \ s = 1.2, \ t = \) __________
p-value = ________ Decision rule:

Critical value approach:
C.V. = __________ Decision rule:

Conclusion:
Practice on t-test with SPSS output data
(Assuming sampling from normal population)

H₀: \(\mu = 36 \)
Hₐ: \(\mu \neq 36 \)
\(\alpha = 0.05 \)

p-value approach:
Sample size = 10, \(t = 5.896 \), two-sided p-value = .002 given from statistical software
P-value = ________ Decision rule:

Critical value approach:
C.V. = ____________ Decision rule:

Conclusion:

H₀: \(\mu \geq 36 \)
Hₐ: \(\mu < 36 \)
\(\alpha = 0.05 \)

p-value approach:
Sample size = 10, \(t = -5.896 \), two-sided p-value = .002 given from statistical software
P-value = ________ Decision rule:

Critical value approach:
C.V. = ____________ Decision rule:

Conclusion:

H₀: \(\mu \geq 36 \)
Hₐ: \(\mu < 36 \)
\(\alpha = 0.05 \)

p-value approach:
Sample size = 10, \(t = 5.896 \), two-sided p-value = .002 given from statistical software
P-value = ________ Decision rule:

Critical value approach:
C.V. = ____________ Decision rule:

Conclusion: